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Fractional Langevin model of memory in financial markets
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The separation of the microscopic and macroscopic time scales is necessary for the validity of ordinary
statistical physics and the dynamical description embodied in the Langevin equation. When the microscopic
time scale diverges, the differential equations on the macroscopic level are no longer valid and must be
replaced with fractional differential equations of motion; in particular, we obtain a fractional-differential
stochastic equation of motion. After decades of statistical analysis of financial time series certain ‘‘stylized
facts’’ have emerged, including the statistics of stock price fluctuations having ‘‘fat tails’’ and their linear
correlations in time being exceedingly short lived. On the other hand, the magnitude of these fluctuations and
other such measures of market volatility possess temporal correlations that decay as an inverse power law. One
explanation of this long-term memory is that it is a consequence of the time-scale separation between ‘‘mi-
croscopic’’ and ‘‘macroscopic’’ economic variables. We propose a fractional Langevin equation as a dynamical
model of the observed memory in financial time series.
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I. INTRODUCTION

Statistical features of financial time series, which app
to command sufficiently wide consensus among investiga
and practitioners alike, are generally known as ‘‘styliz
facts’’ @1#. Notable among them is the exponential decay
the two-time correlation function of asset returns, with a tim
constant on the order of a few minutes for liquid marke
This fact, known for decades@2# and confirmed recently by
sophisticated analyses@3#, is often interpreted as compellin
evidence that asset prices are essentially unpredictable.
means that asset prices cannot be predicted beyond a
minutes using their past behavior@4#.

However, the autocorrelation function of a stochastic va
able is only sensitive to its linear temporal correlations, a
thus the rapid exponential decay of such correlations d
not preclude the possibility of more subtle nonlinear lon
range correlations among the data. In fact, some nonlin
functions of the returns are known to be long-range co
lated@1#, which indicates that the stochastic processes un
lying financial time series do possess long-range mem
@5#. The aim of this paper is to propose a model of su
memory effects based on a fractional Langevin equation

Perhaps the simplest nonlinear function of the returns
exhibit long-range correlations is the absolute value, as
course, do all the powers of the absolute value@1#. Such a
function, or its square, is often used as a quantitative m
sure of thevolatility, one of the most important paramete
for risk-management purposes@1,6,7#, and one that has bee
the object of numerous theoretical models in the literat
@8#.

A. Econophysics

In finance, volatility is generally understood as a meas
of the size and frequency of the fluctuations of asset pric
thus leading to the standard deviations of the corresponding
probability distribution function~PDF! as a natural candidat
1063-651X/2002/66~4!/046118~12!/$20.00 66 0461
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for such a measure. However, in the absence of a satisfac
theoretical model of price dynamics, the underlying PDF
are not known and their relevant parameters can at best
be estimated from the data.

Financial time series are notoriously erratic, but not qu
structureless: even a cursory glance at a sufficiently deta
chart of price movements reveals that asset prices appe
suffer periods of relatively low variability interspersed wi
periods of much higher variability. This stylized fact
widely referred to as ‘‘volatility clustering’’ and intriguingly,
seems to be independent of the specific nature of the ass
constant value ofs would fail to capture this aspect of ma
ket data and thus would be of limited utility for the purpos
of long-term risk management. A suitable compromise is
allow for a time-dependents, to be properly defined, thu
giving rise to a class of models known as ‘‘stochastic vo
tility models.’’ The operational definition of ‘‘local’’ volatil-
ity we consider here is the one adopted in Ref.@6#.

Let the return at timet be

g~ t !5 lnFp~ t1Dt !

p~ t ! G , ~1.1!

wherep(t) is the price of the asset at timet and Dt is the
interval at which prices are sampled. Given the total timeT
5nDt, with n an integer,v(t), the volatility at timet, is
defined as the average of the absolute value ofg(t) over the
time windowT,

vT~ t ![
1

n (
t85t

t1n21

ug~ t8!u. ~1.2!

One is to chooseT long enough so that the averages a
statistically meaningful but not so long as to lose the tem
ral ‘‘resolution.’’ The authors of Ref.@6# reported their re-
sults with time windows varying between tens of minutes
several days, with their data analysis confirming long-ran
correlations in the volatility.
©2002 The American Physical Society18-1
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Herein we are primarily interested in identifying a mech
nism that may be responsible for such long-term memory
financial time series, rather than merely devising an al
rithm capable of reproducing the observed statistical f
tures. In another recent empirical study@3# compelling sta-
tistical evidence is presented that long-range correlation
volatility are due to corresponding long-range correlations
market activity, as measured by the time-dependent num
of transactions per unit time of a given stock@3,9#. The size
of individual transactions, on the other hand, turns out to
essentially immaterial to memory effects. With such emp
cal evidence in mind, we therefore choose to focus on ma
activity, as the variable that by and large incorporates
memory contents manifested in financial time series thro
the volatility. This is also the viewpoint adopted in Ref.@10#,
in which a microscopic mechanism is sought for long-ran
correlations in the volatility, even though market activity
the quantity that appears explicitly in the mathemati
model proposed therein.

B. Statistical physics models

Market activity is a stochastic process and in statisti
physics there have been two approaches to describing
chastic phenomena. One uses dynamical variables, as
Langevin. The existence of a separation between the mi
scopic and macroscopic time scales leads to a stochastic
ferential equation to describe the macroscopic dynam
This is the Heisenberg representation in which the focu
on the time evolution of the physical observables@11#. The
second approach uses the Schro¨dinger perspective corre
sponding to the time evolution of the Liouville density in th
phase space for the system. In the former case, the u
outcome is the ‘‘derivation’’ from mechanics of an ordina
Langevin equation@12#. In the latter case, the evolution o
the system is described by a master equation for the p
ability density. The latter approach usually leads to the c
ventional diffusion equation, with the diffusion process d
scribed by a second-order derivative in the phase sp
variables and first-order derivative in time@12#.

In the Heisenberg perspective, after averaging over an
semble of realizations of the stochastic force, the relaxa
of a physical observable is described by an exponential fu
tion. In the Schro¨dinger perspective, the mathematical rep
sentation of the diffusion process is given, as we have s
by a second-order spatial derivative of a probability dens
function. Therefore, the mathematical description rests
either ordinary analytical functions~exponential functions!
describing the dynamics, or on conventional differential o
erators~first-and second-order partial derivatives! describing
the phase space evolution.

There is a relation between the nondifferentiability of m
croscopic processes, the differentiability of macroscopic p
cesses and the conditions of the central limit theorem~CLT!.
Recall that in the CLT the quantities being added together
statistically independent, or at most weakly dependent
order for the theorem to be applicable. When there is a la
number of statistically independent, identically distribut
random variables, with a finite variance, added togeth
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Gaussian statistics emerge for the sum variable. In a dyna
cal system the CLT applies if the time scales for the mic
scopic processes are much smaller than the time scale
the macroscopic processes. This separation of time sc
implies that the microscopic dynamics are stable, since
namical instabilities can have arbitrarily long time scale
Once a condition of time-scale separation between the
croscopic and macroscopic is established, in the long-t
limit, the memory of the details of microscopic dynamics
lost, and Gaussian statistics result. This separation of t
scales also means that the macroscopic dynamics can b
scribed by the ordinary differential calculus, even if the m
croscopic dynamics are incompatible with the methods
ordinary calculus@13#. It is useful to point out here that th
data from financial markets indicates that the price statist
the dynamical process of interest, are not Gaussian@14,15#.

On the other hand, in the case where a time-scale sep
tion between the macroscopic and the microscopic leve
description does not exist, the memory of the nondiffere
tiable nature of the phenomenon at the microscopic leve
description is not suppressed. In this case the transport e
tions cannot be expressed in terms of ordinary differen
calculations, even if we limit our observation to the macr
scopic level. This inability to use the ordinary calculus at t
macroscopic level forces the time derivative in the Lange
equation to be replaced with a fractional time derivativ
Thus, we obtain a fractional stochastic equation to desc
the dynamics of the physical observables. Another con
quence of this nondifferentiability is that the Laplacian o
erator of normal diffusion is replaced with a fractional L
placian, yielding a fractional diffusion equation in the pha
space for the system. The arguments leading to these e
tions in a physical context have been developed by a num
of investigators, see, for example, Refs.@16,17#, and for a
review @18#.

In the present case, the stochastic variable constituting
macroscopic process is market activity, whereas the mic
scopic process~noise term! driving the latter, can represen
the flow of information made available to agents. Unc
tainty is a fact of life, and controlling its influence or, mo
technically, managing risk, is the ultimate motivation f
trading activity to occur at all. The very‘‘natural’’ desire fo
making profit can be viewed as an extended, less defens
form of risk management. Agents respond not to uncerta
itself, which is an ever-present background in everyday l
but rather to perceived variations in its intensity, which a
ultimately triggered by information, to be intended in th
broadest sense of the word. Individual trades take place o
a time scale of minutes, and the time scale for the flow
information, however one would choose to quantify it,
unlikely to be much smaller than that. It seems to us, the
fore, that market activity constitutes a case in which the ti
scales for the macroscopic and microscopic processes ca
be clearly separated, thus leading, according to our prece
discussion, to the propagation of the nondifferentiable
pects of the noise term all the way to the macroscopic v
able, and ultimately to the need for a fractional stochas
differential equation to model that variable.
8-2
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In Sec. II we provide physical motivations for a differe
tial equation with a fractional, rather than integer, index
our mathematical instrument of choice. We introducefrac-
tional random walks, and illustrate how even short-rang
correlated noise can yield a long-range correlated proc
provided we adjust the fractional index appropriately.
taking the continuum limit of a fractional random walk w
obtain a fractional differential equation that can serve a
model of anomalous diffusion. In Sec. III we introduce o
fractional Langevin model of memory, and elucidate t
physical meaning of each term of the equation by first exa
ining particular cases of it and deriving their solutions. W
then proceed to solve the complete equation and interpre
absolute value of the solution as the quantity describing m
ket activity. Finally we calculate the autocorrelation functi
of the latter variable and show how it can agree quite fav
ably with empirical data by a suitable choice of the fraction
index. In Sec. IV we draw some conclusions and based o
physical interpretation of the model, comment on the p
sible underlying causes of long-range memory in mar
data.

II. FRACTIONAL STOCHASTIC EQUATIONS

We mentioned the possibility that the fractional calcu
can be of value in describing the changes in fractal proce
over time @19#, and that the dynamics of market activi
might be described by such a process. However we shoul
cognizant of the fact that there is not just one fractional c
culus, rather there is a collection of fractional differentia
and fractional integrals that have been found to reduce to
standard calculus when the appropriate fractional index
comes integer and the functions being acted upon have
specified properties. We use the Riemann-Liouville fractio
operators, which are, by far, the most popular formali
among those that use the fractional calculus to describe c
plex phenomena, see, for example, Refs.@18,20#.

A. Fractional random walk

We find that in order to model long-term memory in com
plex, nondifferentiable, phenomena we need to genera
the concept of differencing to include fractional values.
the same spirit as the random walk model, this approac
modeling long-time memory provides us with a conceptua
straightforward mathematical representation of rather co
plex processes. This kind of random walk was introduc
into economics by Hosking@21#.

Let us define the discrete shift operatorB such that its
operation on a discrete data setY, shifts the index by one
unit,

BYj5Yj 21 , ~2.1!

thereby shifting the data value to one unit of time earlier
simple random walk can be written in terms of the sh
operator as

~12B!Yj5j j , ~2.2!
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where each step size has the valuej j @22,23#. We generalize
this simple random walk by considering the fractional diffe
ence equation

~12B!eYj5j j , ~2.3!

wheree is not an integer.
Now we must find the proper interpretation of Eq.~2.3!

and to do this we follow, in part, the discussion of the ope
tor (12B)e given by West@24#, based on the work of Hosk
ing @21#. The solution to the fractional difference equatio
~2.3! can be written as

Yj5~12B!2ej, ~2.4!

which in terms of the binomial expansion, forueu,1, be-
comes

Yj5 (
k50

` S 2e
k D ~21!kBkj j ,

5 (
k50

` S 2e
k D ~21!kj j 2k . ~2.5!

The difference between Eq.~2.5! and the standard random
walk is that the memory extends infinitely far back in tim
In the ordinary random walk, wheree is an integer, theG
functions have simple poles and the binomial coefficie
vanishes aftere11 time steps, thereby cutting off the sum
In the present case this does not happen, and using s
identities amongG functions we obtain

S 2e
k D5

G~12e!

G~k11!G~2e2k11!
5~21!k

G~k1e!

G~k11!G~e!
.

~2.6!

The solution to the fractional-difference stochastic eq
tion ~2.3! given by Eq.~2.5! clearly couples the present re
sponse of the systemYj to fluctuations that occurred infi
nitely far back in time throughj j 2k ask→`. The size of the
influence of these infinitely remote fluctuations is determin
by the magnitude of the binomial coefficients, since the
coefficients are essentially the coupling strengths of the fl
tuations to the system. We can estimate the strength of
system-environment coupling using Stirling’s approximati
for G functions

G~k1e!

G~k1b!
}ke2b, k@e,b. ~2.7!

so that the coupling strength in Eq.~2.6! becomes

~21!kS 2e
k D}

ke21

G~e!
~2.8!

for k→` sincek@ueu. Thus, the strength of the contributio
to Eq. ~2.5! decreases with increasing time lag as an inve
power law as long asueu,1.

We see from the infinite series representation of
fractional-difference process that, since Eq.~2.5! is linear,
8-3
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when the statistics of thej fluctuations are assumed to b
Gaussian, so too are the statistics of the observed pro
However, whereas thej spectrum is flat, characteristic o
white noise, theY spectrum is an inverse power law, chara
teristic of fractal stochastic processes. From these ana
results we conclude that the process defined by
fractional-difference stochastic equation is analogous to f
tional Gaussian noise. The analogy is complete if we see
5H2 1

2 so that the spectrum reads@21,25#

S~v!'
1

v2H21 as v→0. ~2.9!

In the language of random walks the inverse power l
~2.9! for 1>H. 1

2 , or equivalently for 0,e< 1
2 , implies per-

sistence. In the same way for1
2 >H.0, or equivalently for

2 1
2 <e,0, the spectrum increases as a power law in f

quency and the process is antipersistent. In 1981 Hos
@21# recognized that fractional-difference processes exh
long-term persistent and antipersistent behavior. Thus,
long-time memory that wasassumedin the preceding section
is here a consequence of the fractional dynamics descri
the evolution of the process.

B. Fractional stochastic equations

Let us consider a continuum version of the fraction
difference stochastic equation~2.3!,

Dt
a@Y~ t !#5j~ t !; 0,a<1. ~2.10!

The proper interpretation of this fractional stochastic eq
tion, is actually an integral equation of the form

Ya~ t ![Dt
2a@j~ t !#,

which can be written explicitly in terms of the Rieman
Liouville fractional integral@18,20#

Ya~ t !5
1

G~a!
E

0

t j~t!dt

~ t2t!12a . ~2.11!

Using the power-law indexH5a2 1
2 we write Eq.~2.11! as

YH~ t !5
1

G~H11/2!
E

0

t

~ t2t!H21/2j~t!dt, ~2.12!

which is one choice for the continuum analog of t
fractional-difference stochastic process. Note that our cho
of Eq. ~2.12! differs from the one made by Mandelbrot an
van Ness@26# to describe fractional Brownian motion.

The distribution function is the same as that of the rand
force, since the integral operator~2.11! is linear. Thus, ifj(t)
is a d-function correlated Gaussian process, the system
sponse will also be Gaussian, but with a variance given

sH
2 ~ t !5sH

2 t2H ~2.13!

and
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2HG~H11/2!2 . ~2.14!

Consequently, the statistics of the solution to the abo
fractional-differential stochastic equation, driven by
Wiener process, are Gaussian with a variance that incre
as a power law in time. ForH. 1

2 these fluctuations diffuse
faster than a normal diffusion process and are persistent.
H, 1

2 the fluctuations diffuse slower than normal diffusio
and are antipersistent. The fractional integral therefore tra
forms a Wiener process into an anomalous diffusion proc
@24,26#. Recall thatH5a2 1

2 and 1>a.0 so that the above
process is always antipersistent when resulting from the
lution to a fractional-differential stochastic equation.

III. FRACTIONAL STATISTICS

The modeling of complex phenomena using a simple r
dom walk model of normal diffusion leads to Gaussian s
tistics and a mean-square displacement that increases lin
with time. The most complex phenomena we modeled ab
involved the limit of fractional differences becoming fra
tional derivatives, so that a stochastic process with long-te
memory can be generated by taking the fractional integra
a Wiener process. We saw that such processes have Gau
statistics, but they also have inverse power-law spectra.
system response is therefore a fractal function with frac
dimension given byD522H @24,27,28#.

We now want to shift our focus from random walks to no
differential or more accurately fractional differential, st
chastic phenomena. We generalize the standard approac
modeling complex, statistical, physical phenomena, first p
sented by Langevin. The Langevin equation for the sim
one-dimensional Brownian motion of a unit mass particle

dv~ t !

dt
1lv~ t !5j~ t !. ~3.1!

This is often referred to as an Ornstein-Uhlenbeck proce
due to its dependence on the dissipation parameterl, and the
fact that these two scientists gave the first complete m
ematical description of the solution to this equation@29#.
Physically the dissipation parameter is a consequence o
Stokes drag on Brown’s pollen mote. The proper interpre
tion of Eq. ~3.1! is not as a differential equation, but as a
integral equation of the form

dv~ t !1lv~ t !dt5dB~ t ! ~3.2!

wheredB(t) is a differential Wiener process. We now ge
eralize Eq.~3.2! to account for nonlocal influences, that i
for the kind of relaxation that occurs in polymers and
viscoelastic materials@30#. In an economic context the ana
logs of those influences are war, unemployment, inflat
rates, political scandals, and so on.

A. Fractional Langevin equation

Note that the Langevin equation~3.2! is phenomenologi-
cal in character, so that it is reasonable, in the case of ph
8-4
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FRACTIONAL LANGEVIN MODEL OF MEMORY IN . . . PHYSICAL REVIEW E66, 046118 ~2002!
cal phenomena with memory, to replace Newton’s force l
with a fractional derivative of the velocity. Physically, th
replacement means that the force is only defined on a fra
set of points. To ensure the physical reasonability of t
model, the fractional force law ought to include a depe
dence on the initial velocity to ensure a proper interpretat
of the initial value problem. In addition the dissipation p
rameter should have the appropriate scaled units. This lin
approach has been taken@18,30# in physical systems, so th
fractional Langevin equation is

Dt
a@v~ t !#2v0

t2a

G~12a!
52lav~ t !1j~ t !, a>a.0

~3.3!

wherej(t) is, for the moment, chosen to be a Wiener proc
and the initial value for the process is given byv0 . The
question is:Is Eq. (3.3) a reasonable generalization of th
usual Langevin equation given by Eq. (3.1) to provide a
namical model of the temporal evolution of financial mark
activity?

Here we adapt the above physical arguments to finan
markets and write the fractional-dynamical equation of m
tion for the normalized number of trades in a given inter
of time, n(t). Of course, with this definition of the dynam
cal variable the initial value vanishes in Eq.~3.3!, but we
shall not use that fact for a while. We first of all examine t
solutions to equations of the form~3.3!.

1. Stochastic fractional differential equation — no dissipation

Before we work on solving the full fractional Langevi
equation~3.3!, let us look at a somewhat simpler version
this equation, one without dissipation,

Dt
a@v~ t !#2v0

t2a

G~12a!
5j~ t !, ~3.4!

and for the moment we disregard the fact thatv050 for the
market variable. The solution to Eq.~3.4! can be written in
terms of a fractional integral operator

v~ t !2v05Dt
2a@j~ t !#. ~3.5!

We also know that the statistics of the solution to this eq
tion are Gaussian whenj(t) is a Wiener process and th
spectrum of the solution is an inverse power law, as
found in the preceding section. However, we did not exp
itly calculate the correlation properties of the system
sponse. Let us now evaluate the two-point correlation fu
tion using the formal properties of the Riemann-Liouvi
fractional integral to obtain

^@v~ t1!2v0#@v~ t2!2v0#&

5
1

G~a!2 E
0

t1
dt18E

0

t2
dt28

^j~ t18!j~ t28!&

~ t12t18!12a~ t22t28!12a , ~3.6!

where the fluctuations are assumed to bed-function corre-
lated in time
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^j~ t18!j~ t28!&52Dd~ t182t28!. ~3.7!

The integral~3.6! is completely symmetric in the timest1
and t2 , but we know that thed function will restrict the
integration to the earlier of the two times, since this is whe
both variables can be equal. Therefore, we introduce the
tation t. for the greater time andt, for the lesser time, and
implementing thed function ~3.7! under the integral~3.6!
yields

^@v~ t.!2v0#@v~ t,!2v0#&5
4D

G~a!2 E
0

t,

dt~ t.2t !a21

3~ t,2t !a21. ~3.8!

Introducing the normalized variablez5t/t, we obtain, after
some algebra,

^@v~ t.!2v0#@v~ t,!2v0#&

5
4Dt.

a21t,
a

G~a!2 E
0

1

dzS 12
t,

t.
z D a21

~12z!a21. ~3.9!

Using the following integral representation of thehypergeo-
metric function, see for example Miller and Ross~page 304!
@20# or Ref. @31#

2F1~a;b;c:z!5
G~c!

G~a!G~c2a!
E

0

1

dzza21~12z!c2a21

3~12zz!2b, ~3.10!

where Rec.Rea.0, and equating coefficients in Eq.~3.10!
with the terms in Eq.~3.9! we obtain

^@v~ t.!2v0#@v~ t,!2v0#&

5
4Dt.

a21t,
a

aG~a!2 FS 1;12a;11a:
t,

t.
D , ~3.11!

where we have suppressed the suffixes on the hypergeo
ric function and which is only valid fora.0.5 when t.

5t, . Note that the statistics of the solution to Eq.~3.4! are
nonstationary, since the correlation function depends ont.

and t, separately, and not just on the differencet.2t, .
We know, from the linear nature of the differentiatio

procedure, that the statistics of the fractional-dynamical p
cess described by Eq.~3.4! would be Gaussian, if thej fluc-
tuations are assumed to have Gaussian statistics. On
other hand, we know from the data analysis of Gopikrishn
et al. @32#, among others, that the dynamical financial va
ables do not have Gaussian statistics. In fact, market act
has a PDF with power-law tails@3#, whereas the volatility is
log-normal in the central region with an inverse power-la
tail @6# and market activity also has inverse power-law tim
correlations with exponentn50.8560.01 @9,15#.

Therefore we do not make the assumption that thej fluc-
tuations are Gaussian, but we still assume them to hav
d-function correlated character. In this way, if we identify th
8-5
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system variable with the normalized number of trades
introduce the normalized variablez5t, /t. , we obtain

^n~ t.!n~ t,!&5
4Dt.

2a21

aG~a!2 zaF~1;12a;11a:z!.

~3.12!

Of course, we can also use Eq.~3.11! to write the second
moment at timet5t.5t,

^n~ t !2&5
4Dt2a21

aG~a!2 F~1;12a;11a:1! ~3.13!

and using@31#

F~a;b;c:1!5
G~c!G~c2a2b!

G~c2a!G~c2b!
~3.14!

provided Rec.Re@a1b# and c is not a nonpositive integer
we obtain for the second moment

^n~ t !2&5
4D

~2a21!G~a!2 t2a21. ~3.15!

This result, Eq.~3.15!, agrees with that obtained for anom
lous diffusion, if we make the identificationH5a2 1

2 , but
this identification can only be made for 1.a>1/2 in order
to satisfy the condition on the hypergeometric function.
this case we have12 >H>0, corresponding to an antipersi
tent process. In Fig. 1 we graph the autocorrelation func
as a function of the normalized variable for a variety
fractional-differential indicesa,

Ca~ t. ,t,![
^n~ t.!n~ t,!&

^n~ t.1T!2&

5za
F~1;12a;11a:z!

F~1;12a;11a:1!
. ~3.16!

FIG. 1. We graph the logarithm of the autocorrelation functi
from Eq. ~3.16! versus the logarithm ofz for power-law indicesa
50.6, 0.7, 0.8, and 0.9.
04611
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We can see from the figure that each curve has a domi
power-law form, but with differing slopes. So we can wri
the empirical relation

Ca~z!}zm. ~3.17!

The exponentm is a function of the fractional derivative
parametera, and we obtainm>1.5 for 0.6<a<0.9.

However, data that have been processed and publishe
the literature are in a form that can be directly compared w
the scaling result~3.17!. Therefore we introducet,5t.2t
and t5t. into the autocorrelation function and graph th
resulting function versus the normalized time separat
variablet/t in Fig. 2. What we find is

Ca~t,t !5S 12
t

t D
a FS 1;12a;11a:12

t

t D
F~1;12a;11a:1!

'
A~a!

S 11
t

t D
B~a! , ~3.18!

where the empirical parametersA andB are functions of the
fractional-derivative indexa and are obtained by a leas
squares fit of the indicated phenomenological equation to
autocorrelation function.

The values of the parameters in Eq.~3.18! for each value
of a obtained by least-squares fitting the entire range of
correlation function is depicted in Fig. 2. The parameter v
ues obtained by fitting the data are recorded in Table I. T
values of the empirical power-law index recorded in Tabl
are fit to the linear equation ina,

B~a!522.5216.78a. ~3.19!

FIG. 2. The auto-correlation function fora50.6, 0.7, 0.8, and
0.9 is fit with the empirical equation~3.18! using a least-squares fi
to the parameters. The entire range of the data was used in
fitting.
8-6
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We can see that the range for the power-law index
0.87<B(a)<4.26 for the fractional-derivative index inte
val 0.5<a<1. By comparing Eq.~3.19! with the data fit
@32#, should have

22.5216.78a50.3,

which implies a50.42. However, this value of the
fractional-derivative index is outside the range of validity
our solution. Thus, the present model of the fractio
Langevin equation does not satisfactorily describe the cen
moment properties of the price fluctuations in financial m
kets. However, it should be noted that we have not taken
account market retardation forces, that is, dissipation.
now turn our attention to the modeling of such forces.

2. Fractional differential equation—no fluctuations

Let us examine the solution to the homogeneous fr
tional differential equation, and once we understand that
lution, consider the inhomogeneous case. The homoge
fractional Langevin equation does not contain ‘‘therma
fluctuations,

Dt
a@v~ t !#2v0

t2a

G~12a!
52lav~ t !. ~3.20!

Equation ~3.20! is mathematically well defined, but wha
does it mean physically? From statistical physics we kn
that the fluctuations in the equation of motion are intimat
related to the dissipation, and that in fact they have the s
source. This is what gives rise to the fluctuation-dissipat
relation, relating the strength of the fluctuations to the ra
of the temperature to the dissipation parameter. Howeve
Eq. ~3.20! we have a dissipation without a corresponding
of fluctuations. Since all the operators in Eq.~3.20! are linear
we could interpret this equation in terms of the average
locity.

For now we treat Eq.~3.20! as a mathematical expressio
with the initial velocity given byv0 , the time dependence i
included so as to have a well-defined initial value probl
and the dissipation parameter is appropriately scaled to h
the units corresponding to the order of the fractional deri
tive. The solution to this equation is obtained from the c
responding fractional integral equation

v~ t !2v052laDt
2a@v~ t !# ~3.21!

TABLE I. The least-squares fit of the parameters in the pheno
enological equation~3.18!. A and B are recorded for each of th
values of the order of the fractional derivative.

a A B

0.6 0.67 1.53
0.7 0.95 2.22
0.8 1.00 3.03
0.9 1.01 3.50
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by taking the Laplace transform of the dynamical variab
Denoting the Laplace transform of a variable by a tilde ov
the function,ṽ(s)[TL$v(t);s%, we obtain after some alge
bra, from Eq.~3.21!

ṽ~s!5
v0sa21

la1sa , ~3.22!

wheres is the Laplace variable conjugate to the time. T
inverse Laplace transform of the right-hand side of E
~3.22! is

T L
21H sa21

la1sa ;tJ 5E
C2 i`

C1 i`

est
sa21ds

la1sa ~3.23!

which we calculate using Fox functions to give@30,18#

v~ t !5v0(
k50

`
~21!k

G~11ka!
~lt !ka. ~3.24!

The solution to the homogeneous fractional-different
equation is therefore given by the Mittag-Leffler function

v~ t !5v0Ea„2~lt !a
…. ~3.25!

Thus, the fundamental process is not that of an expon
tial relaxation, as it is for the Ornstein-Uhlenbeck proce
rather the relaxation properties are determined by
asymptotic properties of the Mittag-Leffler function. At ear
times it is not difficult to show that the Mittag-Leffler func
tion has the form of a stretched exponential@30#

lim
t→0

Ea„2~lt !a
…'e2~lt !a

. ~3.26!

At late times it is also not difficult to show that the Mittag
Leffler function has the form of an inverse power law@30#

lim
t→`

Ea„2~lt !a
…'~lt !2a. ~3.27!

The transition time between the two relaxation domai
stretched exponential, and inverse power law is determi
by the parameter,l.

3. Stochastic fractional-differential equation—with dissipation

Let us now look at the solution to the complete fraction
Langevin equation. Again we begin by replacing this equ
tion, Eq. ~3.3!, with the equivalent fractional integral equa
tion

v~ t !2v052laDt
2a@v~ t !#1Dt

2a@j~ t !#. ~3.28!

The Laplace transform of this equation yields after so
algebra

ṽ~s!5
v0sa21

la1sa2
j̀~s!

la1sa . ~3.29!

We note the difference in thes dependence of the two coe
ficients on the right-hand side of Eq.~3.29!. The inverse

-

8-7
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Laplace transform of the first term on the right-hand side
Eq. ~3.29! is the Mittag-Leffler function that we found in th
homogeneous case. The inverse Laplace transform of
second term is the convolution of the random fluctuatio
and a stationary kernel. The kernel is given in terms of a F
function @18#

TL
21H 1

la1sa :tJ 5
~lt !a21

a
H12

11S ltU ~0,1/a!

~0,1/a!,~12a,1! D
~3.30!

as we obtained for the second term in Eq.~3.29!. The series
expansion for this Fox function can be written as@30#

1

a
H12

11S ltU ~0,1/a!

~0,1/a!,~12a,1! D5 (
k50

`
~21!k

G~a1ka!
~lt !ka,

~3.31!

where the series is a representation of the general
Mittag-Leffler function, and is defined in general by

Ea,b~z![(
k50

`
zk

G~ka1b!
, a.0,b.0. ~3.32!

The generalized Mittag-Leffler function reduces to the fam
iar form for b51,

Ea,1~z!5 (
k50

`
zk

G~ka11!
5Ea~z!, ~3.33!

so that both the homogeneous and inhomogeneous term
the solution to Eq.~3.28! can be expressed in terms
Mittag-Leffler functions.

We now write the general solution to the fractional Lang
vin equation, using the inverse Laplace transform of E
~3.29!, as

v~ t !5v0Ea~2~lt !a!1E
0

t

~ t2t8!a21

3Ea,a„2~l@ t2t8#a
…j~ t8!dt8. ~3.34!

This result was obtained by Kobelev and Romanov@33# us-
ing standard techniques for solving Volterra integral eq
tions. In the casea51, the Mittag-Leffler function become
an exponential, so that the solution to the fractional Lange
equation becomes identical to that for an Ornste
Uhlenbeck process

v~ t !5v0e2lt1E
0

t

e2l~ t2t8!j~ t8!dt8 ~3.35!

as it should.

B. Market activity as a fractal processes

The traditional quantities calculated from the normaliz
number of trades time series are the autocorrelation func
and the standard deviation of the time series. The latte
often referred to as the market activity as we mentioned@9#.
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We can calculate these quantities using the solution to
fractional Langevin equation~3.34!. The autocorrelation
function is

^n~ t1!n~ t2!&5E
0

t

dt18~ t12t18!a21E
0

t2
dt28~ t22t28!a21

3Ea,a„2la~ t12t18!a
…Ea,a„2la~ t22t28!a

…

3^j~ t18!j~ t28!&, ~3.36!

where the meaning of this equation is tied to the statistics
the random force driving the system and we have set
initial value to zero as it would be for a financial mark
variable. The traditional assumption is that the random fl
tuations have Gaussian statistics and no memory, that is,
ared-function correlated in time, see Eq.~3.7!, andD is the
strength of the fluctuations. We make the latter assump
here, but not the former; that is, we assumed-function cor-
related fluctuations, but we do not specify the statistics.

1. Evaluating the integral term

Here again we observe that the correlation integral
completely symmetric in the timest1 and t2 , so that intro-
ducing the greater and lesser times,t. and t, , and imple-
menting thed function, the integral term in Eq.~3.36! re-
duces to

I 52E
0

t,

dt~ t.2t !a21~ t,2t !a21Ea,a„2la~ t.2t !a
…

3Ea,a„2la~ t,2t !a
…. ~3.37!

Making use of the series expression for the generali
Mittag-Leffler function in Eq.~3.37! and changing the initial
value on the sums yields

I 52(
k51

`

(
l 51

`
~2la!k1 l 22

G~ka!G~ la!
I kl , ~3.38!

where we have introduced the integral

I kl5E
0

t,

dt~ t.2t !ka21~ t,2t ! la21. ~3.39!

Factoring the timest. and t, out of the integral and intro-
ducing the scaled variablez5t/t, allows us to write

I kl5t.
ka21t,

laE
0

1

dzS 12z
t,

t.
D ka21

~12z! la21,

~3.40!

so that we can again use the integral representation of
hypergeometric function, Eq.~3.10!, to evaluate this integra
as

I kl5t.
ka21t,

la G~ la!

G~ la11!
FS 1;12ka;11 la:

t,

t.
D .

~3.41!
8-8
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Thus, the integral term in the trade autocorrelation funct
becomes

I 52(
k51

`

(
l 51

`
~2la!k1 l 22t,

ka21t,
la

G~ka!G~ la11!
FS 1;12ka;11 la:

t,

t.
D

~3.42!

and the entire autocorrelation function is

^n~ t.!n~ t,!&54D (
k51

`

(
l 51

`
~2la!k1 l 22t.

ka21t,
la

G~ka!G~ la11!

3FS 1;12ka;11 la:
t,

t.
D , ~3.43!

which clearly, is a nonstationary result, due to the dep
dence on both times, independently of one another. The
not much more that we can do analytically with Eq.~3.43!
due to its generality; let us therefore simplify the express
somewhat.

2. The time dependence of the market activity

The second moment of the dynamical variable is obtai
by settingt.5t,5t in Eq. ~3.43! to yield

^n~ t !2&54D (
k51

`

(
l 51

`
~2la!k1 l 22t ~k1 l !a21

G~ka!G~ la11!

3F~1;12ka;11 la:1!, ~3.44!

where we can use Eq.~3.14! to replace the hypergeometr
function by ratios ofG functions. After some cancellation o
terms, Eq.~3.44! reduces to

^n~ t !2&54D (
k51

`

(
l 51

`
~2la!k1 l 22

G~ka!G~ la11!
t ~k1 l !a21

la

la1ka21
,

where, if the second term on the right-hand side of this eq
tion is denoted byI, we can write@33#

dI
dt

5 (
k51

`

(
l 51

`
~2la!k1 l 22

G~ka!G~ la!
t ~k11!a22,
n

-
is

n

d

a-

which clearly integrates to

I5E
0

tF (
k51

`
~2lat8a!k

G~ka! G2
dt8

t82 .

We can also take the derivative of the Mittag-Leffler functi

dEa~2lt !a)

dt
5 (

k51

`
~2lata!k

G~ka!

1

t
, ~3.45!

where thek50 term vanishes due to the pole of theG func-
tion, so that the second moment of the velocity can be
written @33#

^n~ t !2&54DE
0

tFdEa„2~lt8!a
…

dt8 G2

dt8. ~3.46!

We can determine the early time properties of the sec
moment in Eq.~3.46!, by keeping the lowest-order term i
the series expansion~3.45!. Thus, the leading terms in th
early time analysis of the market activity as measured by
standard deviation is

lim
t→0

A^n~ t !2&'
2

G~a!
A D

2a21
~lt !a21/2. ~3.47!

This is consistent with the results obtained earlier, see E
~3.13!–~3.15!.

3. The autocorrelation function

We can use the results of the Secs. III B 2 and III B 3
define the autocorrelation function as the ratio of Eq.~3.43!
to Eq. ~3.44! with t.5t and t,5t2t

Ca~t,t !5
^n~ t !n~ t2t!&

^n~ t !2&
. ~3.48!

Here again we can plot the autocorrelation function ver
the dimensionless time difference,h5t/t, to see the depen
dence of this quantity on the fractional derivative index. T
form of the auto-correlation function is
C~t,t !5

(
k51

`

(
l 51

`
~21!k1 l 22~lt !ka1 la21~12h! la

G~ka!G~ la11!
F~1:12ka;11 la:12h!

(
k51

`

(
l 51

`
~2ultua!k1 l 22

G~ka!G~ la11!
F~1:12ka:11 la:1!

, ~3.49!

046118-9
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which does not have the apparently simple form obser
earlier.

In Fig. 3 we observe the decrease in the autocorrela
function. We attempted to fit this decrease, as we did ear
with a simple inverse power-law equation, usinglt510, but
this yielded power-law indices greater than 10. As an al
native, we decided on the phenomenological equation

Ca~h!5
A

hB expu2hCu, ~3.50!

where the empirical parametersA, B andC are functions of
the fractional-derivative indexa. The parameters in Eq
~3.50! are obtained by a least-squares fit to the autocorr
tion function ~3.49!, usinglt510 and restricting the rang
on the sums to 1<k, l<50. The values of the parameters f
four values ofa are recorded in Table II using all the data
fit the coefficients. Again we can use the data@32# to fit the
inverse power law and from this we finda50.05 which is
again outside the domain of our solution.

The problem is that we are fitting the theoretical corre
tion function over its entire domain, whereas the correlat
function for the data is only fit over very early times. It is n
wonder that the parameters we obtain from such a fit do
match with those obtained from the data. Therefore let
reduce the domain over which we fit the data. Using

FIG. 3. The auto-correlation function~3.48! is plotted versus the
dimensionless time intervalt/t on log-log graph paper and a leas
squares fit to all the data using the phenomenological equa
~3.50!. The fits for the values of the fractional derivative indexa
50.9, 0.8, 0.07, and 0.6 are shown.

TABLE II. The least-squares fit of the parameters in the p
nomenological equation~3.50!. A, B and C to all the data are re-
corded for each value of the order of the fractional derivative.

a A B C

0.6 0.23 0.12 23.42
0.7 0.52 0.06 17.48
0.8 0.76 0.03 14.00
0.9 0.91 0.01 11.60
04611
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above least-square fit, we write for a fixed length time ser
the autocorrelation function in the interval 0.001t<t
<0.02t as

Ca~h!5
A

hB , ~3.51!

where againA andB are functions ofa. Here we employ a
lower limit on the range of the correlation function, as we
as an upper limit, to simulate the discrete nature of the fin
cial data. In Table III we record the values for the paramet
obtained using Eq.~3.51! as the fitting function. In Fig. 4 we
depict the fit of Eq.~3.51! to the theoretical correlation func
tion.

Here we can use the data analysis of Gopikrishnanet al.
@32# for the correlation function of the absolute value of t
price returns in their Fig. 3~b! or that of Liuet al. @6# in their
Fig. 8~b!. By comparing the inverse power-law indices wi
those in their figures, we obtain

0.8120.84a50.3060.08, ~3.52!

indicating a fractional-derivative index ofa50.6060.10.
This index is consistent with the fractional Langevin mod
and with an antipersistent random walk interpretation w
H50.4060.10. Further, using a Tauberian theorem, we c
clude that the high-frequency form of the spectrum is giv
by the inverse power law

n

FIG. 4. The auto-correlation function~3.48! is plotted versus the
dimensionless time intervalt/t on log-log graph paper and a leas
squares fit to the time interval (0.001t,0.02t) with the phenomeno-
logical equation~3.50!. Only the valuesa50.9, 0.8, 0.07, and 0.6
are shown.

-

TABLE III. The least-squares fit of the parameters in the ph
nomenological equation~3.51!. A andB to all the data are recorde
for each value of the order of the fractional derivative.

a A B

0.6 0.077 0.278
0.7 0.20 0.209
0.8 0.358 0.147
0.9 0.509 0.102
8-10
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Sa~v!}
1

v0.1910.84a ~3.53!

as long asa,1.
We point out that we have assumed the equivalence of

theoretical autocorrelation function and that calculated
Gopkirishnanet al. @32# which uses the absolute values
the price fluctuations.

IV. CONCLUSIONS

We have presented here a model of long-range memor
market data. Empirical studies have identified market ac
ity, as measured by the number of trades per unit time, as
likely candidate for the macroscopic stochastic process f
which long-term memory originates and, mediated by mar
impact, is then transferred down to certain nonlinear fu
tions of price fluctuations, including measures of volatili
This explains our choice of market activity as the stocha
variable to be modeled. We hypothesized that market acti
constitutes a macroscopic stochastic process driven by a
croscopic random noise representing the flow of informat
available to agents. No further hypothesis is present in
model, as no temporal correlations were assumed in
noise term.

We have shown that a fractional-differential operator c
couple a short-term memory process to a long-term mem
one and that the exponent found in the empirical power-
can be successfully reproduced by suitably adjusting the
dex of the fractional derivative. However, the questions w
is the physical meaning of the model and how can its res
be interpreted in economic terms remain.

In physical systems, the emergence of power laws is g
erally associated with an underlying scale invariance, so
tempting to put forth the working hypothesis that the sa
principle may be at work in economic systems as well@34–
36#. In particular, power-law behavior arises in physical p
.

f
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cesses in which a constant, or nearly constant energy inp
stored in a system and then released in ‘‘fits and starts,’’ t
is, in an intermittent fashion, thus exhibiting an alternation
periods of low to moderate activity interspersed with inten
and sudden ‘‘bursts’’ of activity with no preferential tim
scale involved. Examples of such processes are earthqu
@37#, rainfalls @38#, turbulent fluid flow @39#, relaxation of
stress in viscoelastic materials@30#, microcrack propagation
@40#, and other processes with stick-slip dynamics. T
‘‘economic analog’’ of the above picture would be the nea
steady input of information which builds up in the mark
until the different pieces come together to form, in t
agents’ mind, a sufficiently coherent signal, thus rous
them to action.

The interpretation of the flow of information as the dri
ing energy source in an economic context is not new. It w
advanced a few years ago@41# to suggest possible similari
ties between the price-formation process and the energy
cade in turbulence@39#. However, our model has its point o
departure with the observation of the lack of separation
the scales pertaining to the information flow as a microsco
process and those relative to an empirically observable m
roscopic process, such as market activity. All analogies w
other physical systems are here invokeda posteriorito inter-
pret the model’s solution. Moreover, the same equation
describe slightly different power laws observed in differe
assets, by simply adjusting the corresponding fractional
dex, without modifying the driving noise terms, which wou
be desirable, as presumably different stocks may be affe
differently by the same pieces of information with comm
temporal correlations. We had previously used an ident
model to describe long-term memory effects exhibited by
volatility @42#, whose empirical autocorrelation function d
cays as a power law with a different exponent@43-45#. How-
ever, we believe the connection between information fl
and trading activity to be more direct, thus rendering t
‘‘physical’’ interpretation of the model more transparent.
.
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